Comparison of Machine Learning Performance with TIMI and GRACE Score for Cardiovascular Risk Prediction in Acute Coronary Syndrome: Meta-Analysis

Authors

  • Indah Pertiwi Leona Kefamenanu Hospital
  • Resi Citra Dewi Sitanala Hospital

DOI:

https://doi.org/10.46799/jhs.v6i4.2438

Keywords:

machine learning, timi score, grace score, acute coronary syndrome, cardiovascular risk prediction, meta-analysis

Abstract

Acute Coronary Syndrome (ACS) risk stratification relies on TIMI and GRACE scores, which lack accuracy for individual-level predictions. Machine Learning (ML) offers promising alternatives but faces challenges in interpretability and clinical adoption. This meta-analysis compares ML models (DNN, XGBoost, Random Forest, GBDT, SVM) with TIMI/GRACE scores in predicting cardiovascular events, while addressing implementation barriers. Following PRISMA guidelines, we analyzed 50 studies (1,592,034 patients) from PubMed, Scopus, and Web of Science (2015–2025). Performance metrics (AUC, sensitivity, specificity) were pooled using random-effects models, and publication bias was assessed via funnel plots. ML models significantly outperformed conventional scores, with Random Forest (AUC=0.99), XGBoost (AUC=0.98), and DNN (sensitivity=99%) demonstrating superior discrimination. However, heterogeneity in validation (e.g., Asian vs. European cohorts) and "black-box" limitations were identified. The study advocates for explainable AI, multi-center validation, and clinician training to facilitate ML integration into Electronic Health Records (EHRs). These steps could establish ML as the new standard in ACS care, improving outcomes while reducing healthcare costs.

References

Balasubramanian, R. N., Mills, G. B., Wilkinson, C., Mehran, R., & Kunadian, V. (2023). Role and relevance of risk stratification models in the modern-day management of non-ST elevation acute coronary syndromes. Heart, 109(7), 504–510.

Chhikara, B. S., Kumar, R., Singh, J., & Kumar, S. (2024). Heart disease prediction using Machine learning and cardiovascular therapeutics development using molecular intelligence simulations: A perspective review. Biomedical and Therapeutics Letters, 11(2), 920.

Chowdhury, M. Z. I., Leung, A. A., Walker, R. L., Sikdar, K. C., O’Beirne, M., Quan, H., & Turin, T. C. (2023). A comparison of machine learning algorithms and traditional regression-based statistical modeling for predicting hypertension incidence in a Canadian population. Scientific Reports, 13(1), 13.

Chowdhury, M. Z. I., Naeem, I., Quan, H., Leung, A. A., Sikdar, K. C., O’Beirne, M., & Turin, T. C. (2022). Prediction of hypertension using traditional regression and machine learning models: A systematic review and meta-analysis. PloS one, 17(4), e0266334.

Corcoran, D., Grant, P., & Berry, C. (2015). Risk stratification in non-ST elevation acute coronary syndromes: Risk scores, biomarkers and clinical judgment. IJC Heart & Vasculature, 8, 131–137.

Fioranelli, M., Bottaccioli, A. G., Bottaccioli, F., Bianchi, M., Rovesti, M., & Roccia, M. G. (2018). Stress and inflammation in coronary artery disease: a review psychoneuroendocrineimmunology-based. Frontiers in immunology, 9, 358054.

Gaidai, O., Cao, Y., & Loginov, S. (2023). Global cardiovascular diseases death rate prediction. Current problems in cardiology, 48(5), 101622.

Gaziano, T. A. (2022). Cardiovascular diseases worldwide. Public Health Approach Cardiovasc. Dis. Prev. Manag, 1, 8–18.

Georgiopoulos, G., Kraler, S., Mueller-Hennessen, M., Delialis, D., Mavraganis, G., Sopova, K., Wenzl, F. A., Räber, L., Biener, M., & Stähli, B. E. (2023). Modification of the GRACE risk score for risk prediction in patients with acute coronary syndromes. JAMA cardiology, 8(10), 946–956.

Gibson, W. J., Nafee, T., Travis, R., Yee, M., Kerneis, M., Ohman, M., & Gibson, C. M. (2020). Machine learning versus traditional risk stratification methods in acute coronary syndrome: a pooled randomized clinical trial analysis. Journal of Thrombosis and Thrombolysis, 1–9. https://doi.org/10.1007/s11239-019-01940-8

Jagannathan, R., Patel, S. A., Ali, M. K., & Narayan, K. M. V. (2019). Global updates on cardiovascular disease mortality trends and attribution of traditional risk factors. Current diabetes reports, 19, 1–12.

Kasim, S., Malek, S., Song, C., Ahmad, W. A. W., Fong, A., Ibrahim, K. S., & et al. (2022). In-hospital mortality risk stratification of Asian ACS patients with artificial intelligence algorithm. PLoS One, 17(12), e0278944. https://doi.org/10.1371/journal.pone.0278944

Ke, J., Chen, Y., Wang, X., Wu, Z., Zhang, Q., Lian, Y., & Chen, F. (2022). Machine learning-based in-hospital mortality prediction models for patients with acute coronary syndrome. The American Journal of Emergency Medicine, 53, 127–134. https://doi.org/10.1016/j.ajem.2021.12.070

Lin, H., Xue, Y., Chen, K., Zhong, S., & Chen, L. (2022). Acute coronary syndrome risk prediction based on gradient boosted tree feature selection and recursive feature elimination: A dataset-specific modeling study. Plos One, 17(11), e0278217. https://doi.org/10.1371/journal.pone.0278217

Munn, Z., Peters, M. D. J., Stern, C., Tufanaru, C., McArthur, A., & Aromataris, E. (2018). Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC medical research methodology, 18, 1–7.

Patel, S. J., Yousuf, S., Padala, J. V, Reddy, S., Saraf, P., Nooh, A., Gutierrez, L. M. A. F., Abdirahman, A. H., Tanveer, R., & Rai, M. (2024). Advancements in Artificial Intelligence for Precision Diagnosis and Treatment of Myocardial Infarction: A Comprehensive Review of Clinical Trials and Randomized Controlled Trials. Cureus, 16(5).

Roseiro, M., Henriques, J., Paredes, S., Rocha, T., & Sousa, J. (2023). An interpretable machine learning approach to estimate the influence of inflammation biomarkers on cardiovascular risk assessment. Computer Methods and Programs in Biomedicine, 230, 107347. https://doi.org/10.1016/j.cmpb.2023.107347

Tschöpe, C., Ammirati, E., Bozkurt, B., Caforio, A. L. P., Cooper, L. T., Felix, S. B., Hare, J. M., Heidecker, B., Heymans, S., & Hübner, N. (2021). Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nature reviews cardiology, 18(3), 169–193.

Valente, F., Henriques, J., Paredes, S., Rocha, T., de Carvalho, P., & Morais, J. (2021). A new approach for interpretability and reliability in clinical risk prediction: Acute coronary syndrome scenario. Artificial Intelligence in Medicine, 117, 102113. https://doi.org/10.1016/j.artmed.2021.102113

Wu, T. T., Lin, X. Q., Mu, Y., Li, H., & Guo, Y. S. (2021). Machine learning for early prediction of in-hospital cardiac arrest in patients with acute coronary syndromes. Clinical Cardiology, 44(4), 467–475. https://doi.org/10.1002/clc.23541

Zhang, X., Wang, X., Xu, L., Liu, J., Ren, P., & Wu, H. (2023). The predictive value of machine learning for mortality risk in patients with acute coronary syndromes: a systematic review and meta-analysis. European Journal of Medical Research, 28(1), 45. https://doi.org/10.1186/s40001-023-01027-4

Downloads

Published

2025-05-22